Chaotic and variational calculus in discrete and continuous time for the Poisson process

نویسنده

  • Nicolas Privault
چکیده

We study a new interpretation of the Poisson space as a triplet (H,B, P ) where H is a Hilbert space, B is the completion of H and P is the extension to the Borel σ−algebra of B of a cylindrical measure on B. A discrete chaotic decomposition of L2(B,P ) is defined, along with multiple stochastic integrals of elements of Hon. It turns out that the directional derivative of functionals in L2(B,P ) in the direction of an element of H is an annihilation operator on the discrete chaotic decomposition. By composition with the Poisson process, we deduce continuous-time operators of derivation and divergence that form the number operator on the discrete chaotic decomposition. Those results are applied to the representation of random variables in the Wiener-Poisson chaotic decomposition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

A continuous approximation fitting to the discrete distributions using ODE

The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...

متن کامل

Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...

متن کامل

Invariant functions for solving multiplicative discrete and continuous ordinary differential equations

In this paper, at first the elemantary and basic concepts of multiplicative discrete and continous differentian and integration introduced. Then for these kinds of differentiation invariant functions the general solution of discrete and continous multiplicative differential equations will be given. Finaly a vast class of difference equations with variable coefficients and nonlinear difference e...

متن کامل

Pseudoconvex Multiobjective Continuous-time Problems and Vector Variational ‎Inequalities

In this paper, the concept of pseudoconvexity and quasiconvexity for continuous~-time functions are studied and an equivalence condition for pseudoconvexity is obtained. Moreover, under pseudoconvexity assumptions, some relationships between Minty and Stampacchia vector variational inequalities and continuous-time programming problems are presented. Finally, some characterizations of the soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008